
28 Testing Experience – 20 2012

Testers use requirements as the basis of test cases, review them for

testability, and often participate in general requirement reviews or

inspections. Unfortunately, many testers have little knowledge of or

skill in requirements engineering. What level of quality and detail is

realistic to expect in requirements documents? What does testability

really mean? How can testers help improve requirements? Testers should

be able to answer these questions and more, possessing skills in require-

ments engineering.

We complain about requirements “Can’t test this, not clear, not unam-

biguous” but have no clue and are unable to answer questions in return

such as “What do you think is a good testable requirement?”.

However:

 we are one of the main stakeholders, risk analysis, test designs are

based upon requirements

 we are involved in requirements reviews, what level of quality is

reasonable?

 test designs may even be used as requirements

 sometimes (in agile) we identify and specify requirements

 we have a major interest in requirements and are heavily involved!

Agile

The IT-world has changed and most companies practice some kind of

agile development, at least in part of their projects. In agile the tester

is even more involved in requirement than ever before and contributes

to documenting requirements and its acceptance criteria. User story is

one of the primary development artifact for agile project teams. In agile

methodologies requirements are prepared in the form of user stories

which describe small functional units that can be designed, developed,

tested and demonstrated in a single iteration. These user stories include

a description of the functionality to be implemented, any non-functional

criteria, and also include acceptance criteria that must be met for the

user story to be considered complete. Testers have heavily involved in

documenting user stories and its acceptance criteria

Broaden your skill set

There are trends in software testing that the (traditional) tester needs

to be aware of and respond to. Knowledge and skills will be a challenge

in the very near future for many testers. It is just not good enough any-

more to understand testing and hold an ISTQB certificate. We will not

anymore work in our safe independent test team. We will work more

Requirements
Engineering,
also for Testers

Erik van Veenendaal

29Testing Experience – 20 2012

closely together with business representatives and developers helping

each other when needed and as a team trying to build a quality product.

It is expected from testers to have domain knowledge, requirements

engineering skills, development scripting skills, and strong soft skills,

e.g., on communication and negotiation (figure 1).

Test knowledge

 test principles

 techniques

 tools, etc.

IT knowledge

 software development

 requirements

 configuration management

Domain knowledge

 business process

 user characteristics

Soft skills

 communication

 critical mindset

 presentation and reporting

Figure 1. Testing skills and knowledge

Now understanding that as a tester one needs knowledge and skills in

requirements, there are many options. Some testers take in a course in

Requirements Engineering based on the IREB certification scheme, other

course being available as well of course, some practice apprenticing, etc.

Whatever it takes to get the job done.

Five success factors

Based on many years of experience in Requirements Engineering, I would

like to point you to five critical success factors that I would recommended

the tester to start digging into:

1. Requirements attributes

Requirements are much more than “just” the sentence, consider docu-

menting its rationale, priority, requirements type, related use case etc.

Requirement Attributes are properties of a requirement. They capture

important additional information about a requirement. Usually the

requirements attribute evolve into a card (e.g., user story card) being

used in a project or organization (see figure 2). Don’t go overboard, define

a practical set of attributes that all have added value.

Requirement #:

Description:

Rationale:

Source:
Fit Criteria:

Priority:
Supporting Material:

Requirement Type:
Event/Use Case:

Figure 2. Example requirements card

2. Requirements acceptance criteria

Acceptance criteria (also called fit criteria) complete the definition of the

requirement. We have to be able to tell whether a solution completely

satisfies, or fits, a requirement, they will make requirements measur-

able. It is often much easier to add concrete acceptance criteria than to

write a 100�% unambiguous requirements. Acceptance criteria in some

way detail the requirement.

3. Requirements rules

The discussion on “what are good requirements?” is endless. Of course it

depends on the context but most important is needs decisions. A concrete

and usable requirements rule set should be defined that leads to “good

enough” requirements your context. Discuss and define rules on issue

such as iidentification, annotation, changes, consistency, language, brief,

unambiguous, rationale, quantify and compound.

4. Requirements templates

Instead of re-inventing the wheel over and over again, use templates

when defining both functional and non-functional requirements. They

provide consistency and contribute largely to a higher level of unam-

biguousness. It is even more efficient, so why not tomorrow? For stories

typically the following format is applied “As a <role>, I want <goal/desire>

so that <benefit>”. Other common templates include:

The <stakeholder> shall be able to <capability> (e.g., The order clerk shall

be able to raise an invoice)

The <product> shall be able to <action> <entity> (e.g., The launcher shall

be able to launch missiles)

The <product> shall <function> <object> every <performance> <unit>

(e.g., The coffee machine shall produce a hot drink every 10 seconds

5. Requirements reviews

Reviews are by far the most effective and efficient quality assurance

measure to find defects. However, this is only true is applied well. Bal-

ance practical vs. theory is one that is very true here. Understand the

difference between a walkthrough and inspection, these are different

processes, with different stakeholders and different objectives. Start with

your objectives and define a review process that matches these objective.

I have been running a tutorial called “Requirements Engineering for

Testers” for a few years now, maybe I will see you there�… ◼

Erik van Veenendaal (www.erikvanveenendaal.nl) is a leading international

consultant and trainer, and a widely recognized expert in the area of soft-

ware testing and quality management. He is the founder of Improve Quality

Services BV (www.improveqs.nl). He holds the EuroSTAR record, winning the

best tutorial award three times! In 2007 he received the European Testing

Excellence Award for his contribution to the testing profession over the

years. He has been working as a test manager and consultant in various

domains for more than 20 years. He has written numerous papers and a

number of books, including “Practical Risk-Based Testing: The PRISMA Ap-

proach” and “ISTQB Foundations of Software Testing”. He one of the core

developers of the TMap testing methodology and a participant in working

parties of the International Requirements Engineering Board (IREB). Erik is

also a former part-time senior lecturer at the Eindhoven University of Tech-

nology, vice-president of the International Software Testing QualiUcations

Board (2005–2009) and currently board member of the TMMi Foundation.

You can follow Erik on twitter via @ErikvVeenendaal.

> about the author

